
Exploring the Potential of Context-Aware Dynamic CPU
Undervolting

Emmanouil Maroudas
emmmarou@uth.gr

Department of Electrical and Computer Engineering
Volos, Thessaly, Greece

Spyros Lalis
lalis@uth.gr

Department of Electrical and Computer Engineering
Volos, Thessaly, Greece

Nikolaos Bellas
nbellas@uth.gr

Department of Electrical and Computer Engineering
Volos, Thessaly, Greece

Christos D. Antonopoulos
cda@uth.gr

Department of Electrical and Computer Engineering
Volos, Thessaly, Greece

ABSTRACT
CPU operation at sub-nominal voltage levels has been researched
to reduce the power and energy consumption of computer systems.
While it is possible to determine a safe undervolting level for each
application, typically only the most conservative setting is applied
statically across all workloads. In this paper, we go a step further
and investigate the gains that can be achieved by dynamically and
transparently changing the level of CPU undervolting at runtime.
To enable this functionality, we design and implement a novel,
OS-level, context-aware dynamic undervolting mechanism, able to
decide and apply voltage levels according to the specific tolerance
of each workload that executes on a multicore CPU at a partic-
ular time. Our mechanism can further differentiate between the
user- and kernel-level code executed within the same application
thread, enabling the exploitation of differences in their undervolt-
ing potential. User- and kernel-level code have inherently different
characteristics, yet in previous work have never been characterized
individually. Our experiments, on an Intel x86-64 multicore show
that the proposed approach can reduce the average CPU power
consumption by 5.58%/30.05% compared to static undervolting and
the nominal voltage level, respectively. Finally, we provide indica-
tive estimates for the gains that could be achieved in future CPU
architectures with multiple, per-core voltage domains.

CCS CONCEPTS
• Software and its engineering→Powermanagement; •Hard-
ware → Platform power issues; • Computer systems organiza-
tion →Multicore architectures.

KEYWORDS
dynamic undervolting, energy awareness, power efficiency, work-
load characterization, system software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CF ’21, May 11–13, 2021, Virtual Conference, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8404-9/21/05. . . $15.00
https://doi.org/10.1145/3457388.3458658

ACM Reference Format:
EmmanouilMaroudas, Spyros Lalis, Nikolaos Bellas, and Christos D. Antonopou-
los. 2021. Exploring the Potential of Context-Aware Dynamic CPU Under-
volting. In Computing Frontiers Conference (CF ’21), May 11–13, 2021,Virtual
Conference, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3457388.3458658

1 INTRODUCTION
Energy efficiency is a first-class design goal across real-world sys-
tems of different scales, from large datacenters and HPC nodes to
small embedded IoT devices and smartphones. This necessitates
the design of more sophisticated, energy-aware systems [48] across
the whole deployment range [3, 18, 19]. However, the shrinking
of processor manufacturing designs towards smaller feature sizes
aggravates the extent of energy and performance variability even
across chips of the same family and production batch [31]. For this
reason, the nominal frequency-voltage operating points of CPUs
specified by the manufacturers include wide safety margins, in the
order of 30% [11, 13]. They are, thus, inherently conservative and
not optimized for energy efficiency [9].

There are many efforts to operate hardware at sub-nominal
voltage levels without reducing frequency together with voltage
(undervolting), as a method for exploiting the voltage margins [14]
of CPUs [4, 5, 27, 35, 50], GPUs [28, 29, 44, 46, 49], RAMs [26, 47],
FPGAs [41] andWireless Sensor Nodes (WSNs) [25]. However, most
of this work focuses on applying undervolting in a static way, based
on the worst voltage constraint across all workloads of interest.
This, in turn, limits the potential gains since it is not possible to
exploit the fact that some applications can tolerate a higher degree
of undervolting than others.

Moreover, existing work on CPU voltage margins characteri-
zation [35, 36] and exploitation [22, 23] treats the software stack
monolithically, without distinguishing between different software
components. In particular, no distinct characterization is performed
for user-level code (application) and the kernel-level code of the un-
derlying operating system, which runs on behalf of the application.
This misses an additional opportunity to undervolt the CPU in a
different manner during user- and system-level code execution.

In this paper, we go a step beyond the typical undervolting ap-
proaches and explore the potential of dynamic, context-aware CPU
undervolting on real systems, without additional hardware support
and with unmodified application binaries. To this end, we design

https://doi.org/10.1145/3457388.3458658
https://doi.org/10.1145/3457388.3458658
https://doi.org/10.1145/3457388.3458658

CF ’21, May 11–13, 2021, Virtual Conference, Italy Emmanouil Maroudas, Spyros Lalis, Nikolaos Bellas, and Christos D. Antonopoulos

Figure 1: Undervolting tolerance (mV) of selected applica-
tions on an Intel processor. Horizontal axis starts at 180mV.

and implement CADU, an adaptive OS-level mechanism that dy-
namically adjusts voltage levels according to the specific constraints
of the currently running workload. As an extension (CADU++), the
mechanism can also distinguish between user- and kernel-level
execution within the same thread. This makes it possible to char-
acterize individually, and to exploit differences in undervolting
tolerance between the user- and kernel-level code of applications.

This paper makes the following contributions: (i) We design and
implement CADU/CADU++, an OS-level context-aware dynamic
undervolting mechanism, which adapts CPU voltage at runtime,
according to the undervolting tolerance of the currently running
workload. (ii) We enable precise undervolting characterization, dis-
tinguishing between user- and kernel-level code, further extending
the power-saving potential of CPU undervolting. (iii) We experi-
mentally quantify the power-saving potential of CADU/CADU++
for both native and virtualized workloads. (iv) We identify the lim-
itations of current processor designs in exploiting undervolting
for energy efficiency, and we extrapolate the potential savings by
context-aware CPU undervolting on future processor designs that
may not have those limitations.

The rest of the paper is organized as follows. Section 2 discusses
observations that motivate this work. Section 3 outlines ourmethod-
ology and experimental setup. Section 4 introduces the design of
CADU/CADU++. In Section 5 we experimentally quantify the un-
dervolting tolerance of applications and the power-saving potential
enabled by CADU/CADU++. In Section 6 we discuss the limitations
of processors with a single voltage domain for all cores and pro-
vide power efficiency estimates for future platforms with multiple,
per-core voltage domains (MVD). Section 7 outlines related work.
Finally, Section 8 concludes the paper.

2 MOTIVATION
In static undervolting methods, the applications of interest are
characterized separately to determine their individual tolerance to
lower than nominal voltage. However, the system is ultimately set to
operate at the sub-nominal voltage of the least tolerant application,
even if this is not part of the currently running workload. While
this approach still reduces the power / energy footprint of the
system compared to operation at the nominal CPU voltage, it misses
opportunities for additional savings due to workload variability.

A preliminary exploration of undervolting tolerance in Figure 1
reveals that different applications can operate at significantly differ-
ent offsets from the nominal voltage level, even when running on
the same processor. The deeper undervolting (blue part of the bars)

that can be safely applied on top of the static setting (gray part of
the bars) can be substantial. For example, the 𝑠 𝑗𝑒𝑛𝑔 benchmark can
safely run at an undervolting level that is deeper by more than 25%
w.r.t the static undervolting level of 200mV that would be required
to support a wide range of applications. These extra margins can
be exploited only via a dynamic undervolting approach.

In addition, as Figure 2 shows, kernel-time typically accounts for
less than 1% of the total execution time for realistic workloads. It
is therefore worth exploring whether one can increase the degree
of undervolting for the user-level part of the execution, which
accounts for more than 99% of the total execution time. Indeed,
Figure 1 illustrates that the user-level (green part of the bars) can
tolerate deeper undervolting, when characterized separately from
the kernel part. Notably, for the ℎ264𝑟𝑒 𝑓 benchmark, this increases
the opportunities of dynamic undervolting by more than 2𝑥 .

The above observations motivate us to investigate dynamic un-
dervolting on modern CPUs at application and privilege-level (user
vs. kernel) granularity in a controlled fashion and to explore the
power saving potential vs. the commonly studied static approach.

3 METHODOLOGY
We experiment on a system based on an Intel Skylake Xeon E3 v5
1220 processor, with DP of 80W, voltage range 550mV to 1520mV,
and four cores on a single voltage domain (SVD). The operating
system is Ubuntu 16.04 LTS running the 4.11 kernel, which we
have extended to support dynamic undervolting in a context-aware
manner (see Section 4). All experiments run at the maximum fre-
quency of 3GHz with Turboboost disabled. Note that on modern
Intel CPUs, system software can manipulate core voltage by using
Model Specific Registers (MSRs) to specify a voltage offset with
respect to the nominal voltage [32].

In our experiments, we utilize all four CPU cores. For single-
threaded applications, each core runs an independent instance. For
multi-threaded applications, we invoke a single instance across all
cores. All multi-threaded workloads spawn worker threads (4 or
more) to keep system utilization as close to 100% as possible (while
not overloading the CPU). We characterize a subset of benchmarks
from the stress-ng [20], PARSEC [8] and SPEC CPU2006[17] suites.
These benchmarks are typically studied and characterized in many
other works related to energy-awareness [16, 23, 34, 35, 38, 43, 48,
50]. They have diverse execution profiles, allowing us to evaluate
the effects of operation at reduced CPU voltage on energy and
power consumption over a wide and representative range of codes.

Initially, for each benchmark, we perform a separate, offline
characterization to identify the workload-specific minimum safe
voltage𝑉𝑚𝑖𝑛 , or equivalently the maximum voltage offset𝑉𝑜 𝑓 𝑓 that
can be safely applied to the nominal CPU voltage. This is done
through a binary search between the nominal 𝑉𝑜 𝑓 𝑓 of 0mV and an
overly aggressive, unsafe 𝑉𝑜 𝑓 𝑓 of 300mV, at a resolution of 5mV.
The characterization accepts the𝑉𝑜 𝑓 𝑓 tested as safe if the particular
workload executes for 10 consecutive times without any errors.
Up to this point, the characterization process is the same as for
identifying the proper degree of undervolting in a static approach:
this is the narrowest 𝑉𝑜 𝑓 𝑓 across all benchmarks.

We then use the CADU++ mechanism to execute an additional
characterization phase, in which we characterize separately the

Exploring the Potential of Context-Aware Dynamic CPU Undervolting CF ’21, May 11–13, 2021, Virtual Conference, Italy

Figure 2: Percentage of kernel-time over total execution time of benchmarks for native execution.

user- and kernel-space of each application. More specifically, we
start from the𝑉𝑜 𝑓 𝑓 identified previously and progressively increase
it (towards deeper undervolting) separately for the user- and kernel-
level portions of the execution, to identify potential additional
opportunities at either level. Parts of the entry/exit kernel code
around CADU++ run at the user-level𝑉𝑜 𝑓 𝑓 , however, this has been
evaluated as safe during characterization.

Overall, we find that the least tolerant measured𝑉𝑜 𝑓 𝑓 values are
for clone (205mV) (Figure 1) and the h264ref (210mV), both in native
(non-virtualized) execution. We round down the least tolerant level
at 200mV and use it as the 𝑉𝑜 𝑓 𝑓 for static undervolting.

We execute all our experiments on the same physical machine
to provide a common reference for comparison, factoring out the
effects of hardware variability. To apply our approach to different
machines, these would need to be characterized separately, as is
also the case in current static undervolting approaches. Indicative
runs on machines with identical hardware show similar potential.

Given that virtualization is common practice in large-scale de-
ployments, we replicate all experiments within virtual machines
(VMs), on top of a QEMU/KVM-based hypervisor [6, 21], again
on the same physical machine. In this case, our mechanism runs
within the hypervisor, treating all code that runs within a VM as
user-level and the hypervisor itself as system-level code. For a more
fair comparison with the native execution results, we limit our eval-
uation only during workload execution, excluding any provisioning
phases (VM boot, shutdown).

4 MECHANISM DESIGN & IMPLEMENTATION
In this section, we introduce CADU, our context-aware dynamic
undervolting mechanism, built as an extension to the Linux kernel.
This was developed to enable dynamic, transparent exploration of
undervolting opportunities on top of a real hardware platform. We
note that CADU controls and adjusts the voltage of the processor
depending on the execution context, without changing frequency.

CADU conforms to the following design specifications: (i) It
works on real-world hardware, without requiring specialized hard-
ware support. (ii) It works with unmodified application binaries.
(iii) The interaction with hardware is limited to a minimal, well-
defined interface, thus making it easily portable to different archi-
tectures. (iv) The modifications required to the operating system
(OS) are limited, making it portable to different OSs.

The main idea is to undervolt the processor to the most aggres-
sive yet safe degree, subject to the tolerance of the thread that runs
on each core at a given point in time. To this end, each thread is as-
sociated with an individualized pair of user-level / kernel-level𝑉𝑜 𝑓 𝑓

Figure 3: Design of CADU/ CADU++, with extended support
for single voltage domain (SVD) processors.

values, identified via the characterization process discussed in Sec-
tion 3. Obviously, executions with higher tolerance to undervolting
are associated with larger 𝑉𝑜 𝑓 𝑓 .

Figure 3 gives a high-level overview of the mechanism. Each
core executes code independently, switching between application
threads (context switch) and privilege levels (user-, kernel-level)
through system call invocations or interrupts. Each of these entry
/ exit points triggers, through suitable hooks, the core in-kernel
mechanism (down left). The mechanism (a) decides the next 𝑉𝑜 𝑓 𝑓
based on the code that will execute next on the core, (b) applies
it, and (c) waits to observe the new voltage being reached. The
latter is done only if the applied 𝑉𝑜 𝑓 𝑓 is smaller than the previous
setting (thus configuration towards a higher voltage is commanded).
This is to ensure that the voltage reaches the specified level before
moving to a less tolerant execution context. Steps (b) and (c) are
platform-specific. For Intel processors, such as the one used in our
experiments, we perform voltage control through model specific
registers (MSRs), as discussed in Section 3.

Notably, in modern x86-64 processors like the one used in our ex-
periments, all cores are placed on a single (common) voltage domain
(SVD), thus it is not possible for each core to operate at a different
voltage. For this reason, a globally shared decision vector is used to
record the current 𝑉𝑜 𝑓 𝑓 preference of each core. This vector is con-
sulted in step (a), choosing each time the least aggressive (smallest)
𝑉𝑜 𝑓 𝑓 in order to keep the CPU within the undervolting tolerance
of all active threads. This, in turn, mandates some additional syn-
chronization between cores during steps (a) and (b) to avoid race

CF ’21, May 11–13, 2021, Virtual Conference, Italy Emmanouil Maroudas, Spyros Lalis, Nikolaos Bellas, and Christos D. Antonopoulos

Figure 4: CADU application launcher

conditions that may lead to incorrect voltage adjustments. We im-
plement a spinlock-based locking scheme that mutually excludes
the cores from performing these steps concurrently. In Section 6, we
discuss the SVD limitation, and explore the power / energy saving
potential of CADU for future processor designs where cores may
have separate voltage domains.

In order to inform the mechanism on the maximum tolerable
offsets (user- and kernel-level) of each application, we use a simple
application launcher (Figure 4) that essentially invokes a new sys-
tem call (cadu_ctl) between fork and exec. Also, the mechanism can
be configured to work only when switching between application
threads (simple CADU) or also when switching between the user-
and kernel-level code within the same thread (CADU++).

5 EXPERIMENTAL EVALUATION
In this Section, we analyze experimental results from workloads
comprising multiple instances/threads of the same benchmark. In
Section 6 we also discuss mixed, multi-benchmark workloads. In
all cases, we execute as many instances/threads as required to
maintain the CPU at full utilization. The widest tolerable 𝑉𝑜 𝑓 𝑓
for each benchmark is identified via the characterization process
discussed in Section 3.We use the perf tool [1] to quantify execution
time and power consumption.

We focus on both native and virtualized executions. As Figures 5
and 6 illustrate, virtualizing a workload affects both the percentage
of system-time, as well as the popularity of system calls. The for-
mer reflects on the effect of differences between the least tolerable
voltage at the user- and system-level on average power consump-
tion. The latter affects the tolerable voltage at the kernel-level since
different code paths are excited.

5.1 Characterization of undervolting tolerance
Figure 7 quantifies the results for single application workloads at
full utilization, for the native (top) and virtualized (bottom) exe-
cution. The stacked bars (corresponding to the left axis) show the
degree of undervolting (𝑉𝑜 𝑓 𝑓 in mV) for static undervolting (static,
gray color), when taking into account inter-application variability
(CADU, blue), and when also taking into account intra-application
user- / system-level variability (CADU++, green).

It is apparent that 𝑉𝑜 𝑓 𝑓 is highly workload-dependent on both
native and virtualized execution environments. An important ob-
servation is that during individual characterization of the user-

Figure 5: System call popularity (top 10): native (left) and
virtualized (right) environment.

Figure 6: Percentage of hypervisor time over total execution
(> 1%) of benchmarks (virtualized execution), compared to
the respective kernel time percentage (native execution).

and system-level of each application (CADU++), the undervolting
potential of the user-level proved consistently higher than that
of the kernel level (height of the green part of the bars). This is
a strong indication that user-level code is typically more tolerant
to undervolting than system-level hence the two levels should be
characterized separately for optimal power gains.

Some indicative examples that illustrate the CADU++ improve-
ment over unified user- / system-level undervolting within the same
application (CADU) are gamess, kill,mremap and dup for the native
execution and str, timerfd, get and xalanbmk for the virtualized
execution. Examples where the execution environment affects the
𝑉𝑜 𝑓 𝑓 of the workload can be observed for get, timerfd and bodytrack.
In the native execution of these benchmarks, most of the 𝑉𝑜 𝑓 𝑓 in-
crease comes from the exploitation of inter-application variability
(CADU), whereas the virtualized execution reaches to a similar
depth of undervolting only when user- / system-level variability is
taken into account (CADU++). Interestingly, there are also cases
like freqmine andmemfd where the unified user / system-level char-
acterization is sufficient to reveal the full undervolting potential
for both native and virtualized execution.

Figure 8 summarizes, across all benchmarks, the undervolting
opportunities revealed by the characterization exploiting inter-
application, as well as user- / system-level intra-application vari-
ability. On top of the static undervolting margin, exploiting inter-
application variability (CADU) widens 𝑉𝑜 𝑓 𝑓 by 37mV and 36mV
on average for native and virtualized execution, respectively. Ex-
ploiting system- / user-level variability within each application
(CADU++) further widens 𝑉𝑜 𝑓 𝑓 by extra 8mV and 11mV on aver-
age for the native and virtualized execution.

Exploring the Potential of Context-Aware Dynamic CPU Undervolting CF ’21, May 11–13, 2021, Virtual Conference, Italy

Figure 7: Voltage reduction (bars, left axis) and power gains (lines, right axis) compared with nominal execution. The left axis
starts at 180mV. Workloads consist of multiple instances of the same benchmark (full CPU utilization) for native execution
(top chart) and multiple VMs with the same benchmark (full CPU allocation) for the virtualized execution (bottom chart).

Figure 8: Average opportunities for undervolting (mV),
across all benchmarks, w.r.t. nominal operating points.

5.2 Effect of dynamic undervolting on power
efficiency

The lines in Figure 7 (corresponding to the right axis) illustrate
the gain (%) of CPU package power w.r.t nominal operation, for
the native (top) and virtualized (bottom) execution. We, again, dis-
tinguish between the gains of static undervolting, those achieved
when taking into account inter-application variability (CADU), and
by also taking into account intra-application user- / system-level
variability (CADU++).

The highest power improvement of CADU over static is 19.14%
in the native execution of the timerfd benchmark, and 6.76% in the
virtualized execution of kcmp. The additional power improvement
achieved by CADU++ in native executions is about 14% for dup and
kcmp. In the virualized executions, the extra power gain is up to
13.02% for timerfd.

There are cases where although CADU++ improves the user-
level 𝑉𝑜 𝑓 𝑓 , this does not translate to power gains. An example of
this situation is mremap. Although CADU++ improves the user-
level 𝑉𝑜 𝑓 𝑓 of the native execution by 25𝑚𝑉 w.r.t CADU, this does
not reflect to the overall power consumption. This is because this
application spends 99.95% of its execution time inside the kernel,
thus the extra user-level margins do not have any practical impact
on the overall power consumption.

Figure 9: Average package power gain (%), across all bench-
marks, w.r.t. power consumption when executing at nomi-
nal operating points.

For the native execution, CADU++ shows marginal power im-
provement of about 0.37% versus CADU for crypt, qsort, str, get
and mremap. Similarly, for the virtualized execution of dup, handle,
kcmp, memfd, mmap and mremap, yielding a difference of merely
±0.15% on average. All these benchmarks have a significant percent-
age of kernel-time when executing natively; mremap and mmap
also have high system-time ratio (∼ 12%) in virtualized execution.

Figure 9 depicts the average power gain across all benchmarks
when exploiting inter-application (CADU) and intra-application
user- / system-level variability (CADU++). CADU reduces CPU
power consumption by another ∼ 4.10% on top of static, for both
native and virtualized execution. CADU++ further improves CPU
power consumption by 1.56% and 1.13% for the native and virtual-
ized execution, respectively. The power gain with respect to static
undervolting can reach up to 21.34% and 18.50% (timerfd) for the
native and virtualized execution, respectively.

These results confirm our motivating observation that dynamic
undervolting, in a controlled fashion, can indeed improve power
consumption. We have also measured the power-to-the-plug and
found this to be consistent with the gains reported by perf. In fact,
the actual gains are larger due to the inefficiency of the power
supply system. As we will discuss next, the overhead introduced

CF ’21, May 11–13, 2021, Virtual Conference, Italy Emmanouil Maroudas, Spyros Lalis, Nikolaos Bellas, and Christos D. Antonopoulos

Figure 10: System call rate in the native execution of dealII
and the virtualized execution of perlbench. Note that axis
scales are different in the two plots.

by CADU++ is very small. Therefore, energy gains follow exactly
the same trend and are of the same extent as power gains. Those
results are omitted due to space limitations.

5.3 Overhead of dynamic voltage management
by CADU++

The average performance overhead of CADU++ is quite minimal.
Across all benchmarks, it is on average 0.45% and 0.79% for the
native and virtualized execution, respectively.

There are two outliers with a significant performance overhead:
the native execution of dealII (∼ 8%) and the virtualized execution
of perlbench (∼ 10%). On the one hand, the system call rate of dealII
(Figure 10 (top)) is characterized by multiple spikes of 2000 up
to 3000 system calls per second throughout the entire execution,
corresponding to invocations of brk() to allocate memory for the
task. On the other hand, perlbench (Figure 10 (bottom)) has a steady
high system call rate of 2200 to 2800 calls per second, mostly stat
system calls. Also, during the first second of execution (initialization
phase) there is a high spike of more than 15000 calls per second,
mostly being read, write and brk system calls.

The high system call rate affects CADU++ overhead in two ways:
(a) the mechanism is triggered very frequently (at all entry / exit
points), and (b) due to the fact that the Intel Skylake architecture
implements a single voltage domain for all cores, there is mutual ex-
clusion – and thus serialization – at decision points where CADU++
needs to identify the least tolerant application out of those simulta-
neously executing on the cores of the CPU.

In virtualized executions, memory management is performed at
a coarse granularity between the hypervisor and the guest OS. This
explains why the high overhead of dealII is eliminated in virtualized
execution. However, in virtualized executions, there is less memory
per VM for filesystem caching, and the filesystem cache is not
shared among different concurrently executing instances of the
application (as this is the case in native execution). As a result,
in the virtualized execution of perlbench, many filesystem calls
eventually trap to the hypervisor.

Figure 11: Average latency of voltage-control instruction se-
quences using Intel MSRs’ interface.

(a) per-action (b) per-decision

Figure 12: Breakdown of CADU++ overhead (CPU cycles %).

We have measured the absolute cost of CPU voltage control
operations through the MSR-based interface, using nanoBench [2].
The results are shown in Figure 11. Reading and writing MSRs has a
latency of 2.26`sec and 1.87`sec respectively. Reading and writing
the voltage offsets introduces a delay of approximately 3.60`sec.

We have also measured the relative overhead of the main op-
erations within CADU++. Figure 12 illustrates this breakdown, as
a percentage of the total CPU cycles spent in the execution of
CADU++ code, for the worst-performing benchmark in native exe-
cution (dealII). Figure 12a breaks down the overhead to the main
operations performed: waiting at serialization points (trylock), iden-
tifying the voltage offset to apply based on the least tolerant thread
across all cores of the CPU (decide), and waiting for the voltage to
reach the requested level when a voltage increase was commanded
(wait). Note that trylock and decide account for more than 60% of
the overhead, which could be eliminated in MVD architectures.

Figure 12b summarizes the overhead according to the “direc-
tion” of voltage manipulation. While the decision to maintain the
same voltage (skip) is taken in 42.96% of CADU++ invocations, this
contributes just 24.96% of the total overhead. In the rest of the in-
vocations, the mechanism decides to increase and decrease the CPU
voltage an equal number of times, each corresponding to 28.52%
of the invocations. However, the relative performance overhead of
increase is significantly higher, at 51.02% of total, due to waiting for
the voltage to stabilize at the commanded level. In contrast, decrease
accounts for just 24.02% of the overhead.

6 TOWARDS MVD ARCHITECTURES
The single cores voltage domain (SVD) of current modern proces-
sors may limit the gains of energy-saving mechanisms. In fact, Liu
and Guo [30] show that multiple voltage domains can lead to in-
creased energy gains. In our case, the SVD design hinders the full

Exploring the Potential of Context-Aware Dynamic CPU Undervolting CF ’21, May 11–13, 2021, Virtual Conference, Italy

exploitation of dynamic undervolting potential. This is because
the 𝑉𝑜 𝑓 𝑓 applied at any given time is the one of the least tolerant
application executing on any of the cores of the processor. The
same happens among user- and kernel-level 𝑉𝑜 𝑓 𝑓 , particularly if
the workload includes an application with high system call or inter-
rupt rates, in which case the typically narrower kernel-level 𝑉𝑜 𝑓 𝑓
(vs. the user-level 𝑉𝑜 𝑓 𝑓) will be applied to all cores.

If cores had separate voltage domains, a mechanism like CADU++
would be able to select the𝑉𝑜 𝑓 𝑓 independently for each core, further
increasing the energy gain potential. In the following, we explore
the gains that could be achieved on processor architectures with
multiple voltage domains (MVD). Without loss of generality, we
focus on native execution scenarios.

To quantify the extent of missed opportunities due to the single
voltage domain (SVD), we experiment with the mixed workloads
outlined in Table 1. They comprise applications with low under-
volting tolerance and a narrow 𝑉𝑜 𝑓 𝑓 (h264ref), applications with
high tolerance and a wide 𝑉𝑜 𝑓 𝑓 (gromacs, sjeng) and three ran-
domly selected benchmarks (dealII, namd and xalanbmk). We let
each workload run for 60minutes. For every benchmark within the
workload that finishes, a new instance is spawned.

Table 1: Mixed application workloads

Name Benchmarks mix
mixed-run-1 1x h264ref, 3x gromacs
mixed-run-2 1x h264ref, 3x sjeng
mixed-run-3 1x (h264ref, dealII, namd, xalanbmk)

We use a simple analytical extrapolation model, to estimate the
power consumption that would be expected under CADU++ on an
architecture supporting multiple core voltage domains (MVD). The
approach is explained in more detail below.

We first perform characterization experiments at full utilization,
with single application workloads (let the target application be
denoted by𝑎𝑝𝑝), at different𝑉𝑎𝑝𝑝

𝑜𝑓 𝑓
levels, for each of the applications

of Table 1. From each such experiment, we obtain package power

𝑃
𝑉

𝑎𝑝𝑝

𝑜𝑓 𝑓

𝑝𝑘𝑔
and cores power 𝑃

𝑉
𝑎𝑝𝑝

𝑜𝑓 𝑓

𝑐𝑜𝑟𝑒𝑠 via the perf utility. Then, we calculate
the power of the uncore component (all circuitry except the cores)
of the processor as follows:

𝑃
𝑉

𝑎𝑝𝑝

𝑜𝑓 𝑓

𝑢𝑛𝑐𝑜𝑟𝑒 = 𝑃
𝑉

𝑎𝑝𝑝

𝑜𝑓 𝑓

𝑝𝑘𝑔
− 𝑃

𝑉
𝑎𝑝𝑝

𝑜𝑓 𝑓

𝑐𝑜𝑟𝑒𝑠 (1)

The uncore power consumption obtained from Equation 1 across
all 𝑉𝑎𝑝𝑝

𝑜𝑓 𝑓
is between 10.40 and 11.08 Watts with an average value

𝑃
𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑢𝑛𝑐𝑜𝑟𝑒 of 10.56Watts. Therefore, we consider the uncore power
to be workload-independent for our purposes and use the average
value in our model. We should note that CADU++ does not alter
the voltage of the uncore domain of the CPU.

We also make the assumption that, in the single application
experiments, each core contributes equally to the cores’ power as
all cores are running the same benchmark. Thus, we estimate the
power per core for each application and offset as follows:

𝑃
𝑉

𝑎𝑝𝑝

𝑜𝑓 𝑓

𝑝𝑒𝑟𝑐𝑜𝑟𝑒 = 𝑃
𝑉

𝑎𝑝𝑝

𝑜𝑓 𝑓

𝑐𝑜𝑟𝑒𝑠/𝑛𝑐𝑜𝑟𝑒𝑠 (2)

Figure 13: Estimated power consumption gain whenmoving
from an SVD to an MVD architecture, for mixed application
workloads. We also report the deviation of the estimated vs.
measured power for our SVD processor.

where 𝑛𝑐𝑜𝑟𝑒𝑠 is the number of cores. Based on the above, we esti-
mate the overall package power consumption for potentially unseen
combinations of applications and/or individual core voltages (as-
suming an MVD architecture), as follows:

𝑃𝑀𝑉𝐷
𝑝𝑘𝑔

= 𝑃
𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑢𝑛𝑐𝑜𝑟𝑒 +

𝑛𝑐𝑜𝑟𝑒𝑠∑
𝑖=1

𝑃
𝑉

𝑎𝑝𝑝𝑖
𝑜𝑓 𝑓

𝑝𝑒𝑟𝑐𝑜𝑟𝑒 (3)

where 𝑎𝑝𝑝𝑖 is the application running on the 𝑖th core and 𝑉𝑎𝑝𝑝𝑖
𝑜 𝑓 𝑓

is
the 𝑉𝑜 𝑓 𝑓 of 𝑎𝑝𝑝𝑖 , applied on that particular core.

For a single voltage domain (SVD) processor, where the mecha-
nism is forced to pick the most conservative 𝑉𝑜 𝑓 𝑓 across all appli-
cations that run on the cores of the processor, the package power
consumption can be estimated as:

𝑃𝑆𝑉𝐷
𝑝𝑘𝑔

= 𝑃
𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑢𝑛𝑐𝑜𝑟𝑒 + 𝑛𝑐𝑜𝑟𝑒𝑠 × 𝑃

min
1≤𝑖≤𝑛𝑐𝑜𝑟𝑒𝑠

𝑉
𝑎𝑝𝑝𝑖
𝑜𝑓 𝑓

𝑝𝑒𝑟𝑐𝑜𝑟𝑒 (4)

To validate the accuracy of our model on our system, which
has an SVD processor architecture, we experimentally quantify
the CADU++ power consumption of the workloads of Table 1,
for the voltage offsets of the least tolerant of those benchmarks,
namely h264ref (user: 220mV, kernel: 210mV). Then, we estimate
the power consumption of the same scenario using Equation 4,
with 𝑉𝑎𝑝𝑝𝑖

𝑜 𝑓 𝑓
equal to the h264ref setting, on all cores. We find that

in all workload scenarios the model estimates the package power
consumption of our SVD system within a deviation of less than
1.6% from the measured value, as shown in Figure 13.

As a next step, we use the model to estimate power consumption
on a system with multiple core voltage domains (MVD). For each
benchmark 𝑎𝑝𝑝𝑖 in the mixed application workloads, we substitute

the 𝑃
𝑉

𝑎𝑝𝑝𝑖
𝑜𝑓 𝑓

𝑝𝑒𝑟𝑐𝑜𝑟𝑒 term in Equation 3 with the respective power con-
sumption of 𝑎𝑝𝑝𝑖 identified in the characterization process for the
highest 𝑉𝑎𝑝𝑝

𝑜𝑓 𝑓
(lowest voltage) tolerated by that benchmark. Figure

13 shows that in this case CADU++ could further improve package
power consumption up to 5.67% w.r.t. an SVD architecture. The
MVD improvement mostly depends on the variation of the max-
imum tolerable 𝑉𝑜 𝑓 𝑓 among the benchmarks participating in the
mixed run, as well as between the user- and kernel-space tolerances
of each benchmark and the percentage of time spent in the kernel.
The potential for improvement would be even greater for CPUs
with a larger number of cores. On an SVD architecture, it would be
more probable for a single thread with low undervolting tolerance
to constrain the whole CPU to a high voltage.

CF ’21, May 11–13, 2021, Virtual Conference, Italy Emmanouil Maroudas, Spyros Lalis, Nikolaos Bellas, and Christos D. Antonopoulos

7 RELATEDWORK
There are several studies that use machine learning to drive un-
dervolting decisions. In [23], a methodology is introduced for pre-
dicting the undervolting tolerance of workloads at run-time, using
information from performance counters. This information is then
used as input to a dynamic voltage governor which adjusts CPU
voltage at a sub-nominal level. The work in [15] simulates and stud-
ies a machine-learning approach at firmware level to predict the
most energy-efficient supply voltage of various SoC components
at runtime. Several other works evaluate the energy efficiency /
resilience trade-offs. For instance, [45] performs processor under-
volting to investigate this trade-off on HPC systems, while [16]
and [12] explore the benefits of under-designed and opportunistic
computing in processors and RAMs, respectively.

CADU++ is more context-aware than [15, 23]: it distinguishes
between user- and kernel-level code and is aware of scheduling deci-
sions. Moreover, compared with previous approaches, our approach
is based on offline characterization. While this introduces an extra
characterization step that needs to be performed before running
the applications on the target system, it also achieves robustness to
quick changes in the workload characteristics, which might necessi-
tate prompt voltage adjustment (increase); in approaches that take
dynamic undervolting decisions based on performance counters,
such transitions may lead to crashes if not identified.

MREEF [10] is an online analysis framework that targets energy
gains by reconfiguring multiple subsystems based on the identifica-
tion of execution patterns. For CPUs, the reconfiguration is within
the range of nominal frequency-voltage operating points. CADU
is complementary to MREEF and can be combined with it as a
more aggressive method towards energy efficiency. In [37], voltage
margins are exploited from an approximate computing standpoint,
trading off the quality of results for improved energy efficiency. Our
approach reduces power consumption without having to resort to
such trade-offs. It can also be used to exploit any additional voltage
margins due to the approximation of complex computations.

There is also work on synergistic software/hardware approaches.
[7] discusses so-called very low voltage (VLV) cross-layer designs to
controlled undervolting from compilers to operating systems. [39]
presents a compiler-based technique that controls the instruction
rate issued by the application under aggressive operating margins,
along with a collaborative hardware design that detects voltage
emergencies and a fail-safe checkpoint mechanism. [42] proposes
the use of path delay fault testing as a hardware-assisted method to
select the best energy-efficient operating point, through software
test routines that run periodically and provide critical path cover-
age. Unlike the above approaches, our work studies the potential
power efficiency benefits on unmodified toolchains and binaries
and without penalizing performance through frequency or instruc-
tion issue rate management. Moreover, our mechanism works on an
off-the-shelf system and does not require special hardware support
(beyond the means to control the degree of undervolting). It can
also exploit MVD architectures, leading to additional gains.

Finally, there is a large body of work on early warning hardware
mechanisms, which can improve the safety of undervolting even
when attempting to go beyond the tolerance of the current work-
load. For ARMv8 server processors, ECC errors, SDC errors [35]

and voltage droops [34] can provide insight into voltage predic-
tion schemes and minimize failures. Critical path monitoring on
POWER7 [27, 50] also improve the power efficiency. In [38] control
flow and microarchitectural events are exploited to drive a voltage
emergency predictor. AVOS [24] and TED-C [40] use hardware-
assisted voltage overscaling until the number of detected hardware
errors reaches a predefined threshold. ECC-guided voltage specula-
tion on Itanium [4, 5] results to lower supply voltages and improved
power consumption. Timing errors at circuit level can provide in-
sight of the safety of the currently supplied voltage. Razor [13], is a
dynamic voltage scaling design that can detect and eliminate static
voltage margins [11]. BRAVO [43] proposes Balanced Reliability
Metrics (BRM) as insight for processor reliability towards optimal
supply voltage. In the processor family we study, there are no early
signs of a possible system malfunction. When the voltage drops
below the voltage that can be tolerated by the current workload,
we observe a complete system crash, as in [23, 33]. For this reason,
proper offline characterization is important to determine the degree
of undervolting that can be safely applied to each application.

8 CONCLUSIONS
In this paper, we quantified the extent of the opportunities to im-
prove the power-efficiency of CPUs by operating below their nomi-
nal voltage and dynamically changing the level of CPU undervolting
at execution time, in a context-aware manner. Also, this is the first
time where an attempt is made to characterize and exploit the
difference in undervolting tolerance of the user- and kernel-level
components of the same application.

To enable this study, we designed and implemented within the
Linux kernel a proof of concept mechanism, which enables dy-
namic, transparent voltage management either when switching
cores among applications (CADU), and when switching cores be-
tween the user- and kernel-level as well (CADU++). Our imple-
mentation introduces only a few and isolated modifications to the
Linux kernel (only at entry and exit points), runs on off-the-shelf
hardware (without any additional/special support), and operates
on unmodified application binaries. Hardware-specific components
are minimal and well-defined, enabling portability to different CPU
architectures, including systems where each core (or group of cores)
is placed in a separate voltage domain.

The experimental exploration using CADU/CADU++ on a mod-
ern SVD multi-core processor shows that considering both inter-
application and user-/kernel-level variations, OSs can achieve more
aggressive undervolting and increase power efficiency compared
with existing monolithic approaches. We also show that the pro-
posed approach is expected to achieve even greater gains in MVD
processors supporting per-core voltage domains.

Overall, results suggest that integration of voltage control across
the software stack is feasible and worth to be extended to all layers
of the stack, paving the path towards more aggressive power man-
agement policies and mechanisms in future computing systems.

ACKNOWLEDGMENTS
This work has been partially funded by the European Commission,
project UniServer, contract number 688540.

Exploring the Potential of Context-Aware Dynamic CPU Undervolting CF ’21, May 11–13, 2021, Virtual Conference, Italy

REFERENCES
[1] 2020. Perf tool. https://perf.wiki.kernel.org. [Online; accessed 26-July-2020].
[2] Andreas Abel and Jan Reineke. 2020. nanoBench: a low-overhead tool for running

microbenchmarks on x86 systems. In 2020 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 34–46.

[3] Massimo Alioto, Vivek De, and Andrea Marongiu. 2018. Energy-Quality Scalable
Integrated Circuits and Systems: Continuing Energy Scaling in the Twilight of
Moore’s Law. IEEE Journal on Emerging and Selected Topics in Circuits and Systems
8, 4 (Dec. 2018), 653–678. https://doi.org/10.1109/jetcas.2018.2881461

[4] Anys Bacha and Radu Teodorescu. 2013. Dynamic reduction of voltage margins
by leveraging on-chip ECC in Itanium II processors. In Proceedings of the 40th
Annual International Symposium on Computer Architecture - ISCA '13. ACM Press.
https://doi.org/10.1145/2485922.2485948

[5] Anys Bacha and Radu Teodorescu. 2014. Using ECC Feedback to Guide Voltage
Speculation in Low-Voltage Processors. In 2014 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. IEEE. https://doi.org/10.1109/micro.2014.
54

[6] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[7] Ramon Bertran, Pradip Bose, David Brooks, Jeff Burns, Alper Buyuktosunoglu,
Nandhini Chandramoorthy, Eric Cheng, Martin Cochet, Schuyler Eldridge, Daniel
Friedman, et al. 2017. Very low voltage (VLV) design. In 2017 IEEE International
Conference on Computer Design (ICCD). IEEE, 601–604.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques.

[9] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey. 2009. Variation-Tolerant
Dynamic Power Management at the System-Level. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 17, 9 (Sept. 2009), 1220–1232. https:
//doi.org/10.1109/tvlsi.2009.2019803

[10] Ghislain Landry Tsafack Chetsa, Laurent Lefevre, Jean-Marc Pierson, Patricia
Stolf, and Georges Da Costa. 2015. Application-Agnostic Framework for Improv-
ing the Energy Efficiency of Multiple HPC Subsystems. In 2015 23rd Euromicro
International Conference on Parallel Distributed, and Network-Based Processing.
IEEE. https://doi.org/10.1109/pdp.2015.18

[11] Shidhartha Das, David Roberts, Seokwoo Lee, Sanjay Pant, David Blaauw, Todd
Austin, Krisztián Flautner, and Trevor Mudge. 2006. A self-tuning DVS processor
using delay-error detection and correction. IEEE Journal of Solid-State Circuits
41, 4 (2006), 792–804.

[12] N. Dutt, P. Gupta, A. Nicolau, L. A. D. Bathen, and M. Gottscho. 2013. Variability-
aware memory management for nanoscale computing. In 2013 18th Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE. https://doi.org/10.
1109/aspdac.2013.6509584

[13] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge. [n.d.]. Razor: a low-power pipeline based
on circuit-level timing speculation. In 22nd Digital Avionics Systems Conference.
Proceedings (Cat. No.03CH37449). IEEE Comput. Soc. https://doi.org/10.1109/
micro.2003.1253179

[14] Dimitris Gizopoulos, George Papadimitriou, Athanasios Chatzidimitriou, Vi-
jay Janapa Reddi, Behzad Salami, Osman S Unsal, Adrian Cristal Kestelman, and
Jingwen Leng. 2019. Modern Hardware Margins: CPUs, GPUs, FPGAs Recent
System-Level Studies. In 2019 IEEE 25th International Symposium on On-Line
Testing and Robust System Design (IOLTS). IEEE, 129–134.

[15] Mohammad Saber Golanbari and Mehdi B. Tahoori. 2018. Runtime Adjust-
ment of IoT System-on-Chips for Minimum Energy Operation. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE. https://doi.org/10.
1109/dac.2018.8465782

[16] Puneet Gupta, Yuvraj Agarwal, Lara Dolecek, Nikil Dutt, Rajesh K. Gupta, Rakesh
Kumar, Subhasish Mitra, Alexandru Nicolau, Tajana Simunic Rosing, Mani B.
Srivastava, Steven Swanson, and Dennis Sylvester. 2013. Underdesigned and
Opportunistic Computing in Presence of Hardware Variability. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 32, 1 (Jan. 2013),
8–23. https://doi.org/10.1109/tcad.2012.2223467

[17] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[18] Christos Kalogirou, Panos Koutsovasilis, Christos D. Antonopoulos, Nikolaos Bel-
las, Spyros Lalis, Srikumar Venugopal, and Christian Pinto. 2019. Exploiting CPU
Voltage Margins to Increase the Profit of Cloud Infrastructure Providers. In 2019
19th IEEE/ACM International Symposium on Cluster Cloud and Grid Computing
(CCGRID). IEEE. https://doi.org/10.1109/ccgrid.2019.00044

[19] Georgios Karakonstantis, Konstantinos Tovletoglou, Lev Mukhanov, Hans
Vandierendonck, Dimitrios S. Nikolopoulos, Peter Lawthers, Panos Koutsovasilis,
Manolis Maroudas, Christos D. Antonopoulos, Christos Kalogirou, Nikos Bel-
las, Spyros Lalis, Srikumar Venugopal, Arnau Prat-Perez, Alejandro Lampropu-
los, Marios Kleanthous, Andreas Diavastos, Zacharias Hadjilambrou, Panagiota
Nikolaou, Yiannakis Sazeides, Pedro Trancoso, George Papadimitriou, Manolis
Kaliorakis, Athanasios Chatzidimitriou, Dimitris Gizopoulos, and Shidhartha

Das. 2018. An energy-efficient and error-resilient server ecosystem exceeding
conservative scaling limits. In 2018 Design Automation & Test in Europe Conference
& Exhibition (DATE). IEEE. https://doi.org/10.23919/date.2018.8342175

[20] Colin Ian King. 2017. Stress-ng. URL: http://kernel. ubuntu. com/git/cking/stressng.
git/(visited on 28/03/2018) (2017).

[21] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM:
the Linux Virtual Machine Monitor. In In Proceedings of the 2007 Ottawa Linux
Symposium (OLS’-07.

[22] P. Koutsovasilis, C. Antonopoulos, N. Bellas, S. Lalis, G. Papadimitriou, A.
Chatzidimitriou, and D. Gizopoulos. 2020. The Impact of CPU Voltage Margins
on Power-Constrained Execution. IEEE Transactions on Sustainable Computing
(2020), 1–1. https://doi.org/10.1109/TSUSC.2020.3045195

[23] Panos Koutsovasilis, Konstantinos Parasyris, Christos D Antonopoulos, Niko-
laos Bellas, and Spyros Lalis. 2020. Dynamic Undervolting to Improve Energy
Efficiency on Multicore X86 CPUs. IEEE Transactions on Parallel and Distributed
Systems 31, 12 (2020), 2851–2864.

[24] P K Krause and I Polian. 2011. Adaptive voltage over-scaling for resilient applica-
tions. In 2011 Design Automation & Test in Europe. IEEE. https://doi.org/10.1109/
date.2011.5763153

[25] Ulf Kulau, Felix Büsching, and Lars Wolf. 2016. IdealVolting. ACM Transactions
on Sensor Networks 12, 2 (April 2016), 1–38. https://doi.org/10.1145/2885500

[26] Seyed Saber Nabavi Larimi, Behzad Salami, Osman S. Unsal, Adrian Cristal
Kestelman, Hamid Sarbazi-Azad, and Onur Mutlu. 2020. Understanding Power
Consumption and Reliability of High-Bandwidth Memory with Voltage Under-
scaling. arXiv:2101.00969 [cs.AR]

[27] Charles R. Lefurgy, Alan J. Drake, Michael S. Floyd, Malcolm S. Allen-Ware,
Bishop Brock, Jose A. Tierno, and John B. Carter. 2011. Active management of
timing guardband to save energy in POWER7. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture - MICRO-44 '11. ACM
Press. https://doi.org/10.1145/2155620.2155622

[28] Jingwen Leng, Alper Buyuktosunoglu, Ramon Bertran, Pradip Bose, and Vi-
jay Janapa Reddi. 2015. Safe limits on voltage reduction efficiency in GPUs. In
Proceedings of the 48th International Symposium on Microarchitecture - MICRO-48.
ACM Press. https://doi.org/10.1145/2830772.2830811

[29] Jingwen Leng, Yazhou Zu, and Vijay Janapa Reddi. 2014. Energy Efficiency
Benefits of Reducing the Voltage Guardband on the Kepler GPU Architecture.
(2014).

[30] Jun Liu and Jinhua Guo. 2016. Energy efficient scheduling of real-time tasks on
multi-core processors with voltage islands. Future Generation Computer Systems
56 (March 2016), 202–210. https://doi.org/10.1016/j.future.2015.06.003

[31] Aniruddha Marathe, Yijia Zhang, Grayson Blanks, Nirmal Kumbhare, Ghaleb
Abdulla, and Barry Rountree. 2017. An empirical survey of performance and
energy efficiency variation on Intel processors. In Proceedings of the 5th Inter-
national Workshop on Energy Efficient Supercomputing - E2SC'17. ACM Press.
https://doi.org/10.1145/3149412.3149421

[32] Mihic. [n.d.]. mihic/linux-intel-undervolt. https://github.com/mihic/linux-intel-
undervolt

[33] N. Pandit, Z. Kalbarczyk, and R. K. Iyer. 2009. Effectiveness of machine checks
for error diagnostics. In 2009 IEEE/IFIP International Conference on Dependable
Systems Networks. 578–583. https://doi.org/10.1109/DSN.2009.5270290

[34] George Papadimitriou, Athanasios Chatzidimitriou, and Dimitris Gizopoulos.
2019. Adaptive Voltage/Frequency Scaling and Core Allocation for Balanced
Energy and Performance on Multicore CPUs. In 2019 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE. https:
//doi.org/10.1109/hpca.2019.00033

[35] George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidimitriou, Dimitris
Gizopoulos, Peter Lawthers, and Shidhartha Das. 2017. Harnessing voltage
margins for energy efficiency in multicore CPUs. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture - MICRO-50 '17.
ACM Press. https://doi.org/10.1145/3123939.3124537

[36] George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidimitriou, Char-
alampos Magdalinos, and Dimitris Gizopoulos. 2017. Voltage margins identi-
fication on commercial x86-64 multicore microprocessors. In 2017 IEEE 23rd
International Symposium on On-Line Testing and Robust System Design (IOLTS).
IEEE. https://doi.org/10.1109/iolts.2017.8046198

[37] Konstantinos Parasyris, Vassilis Vassiliadis, Christos D. Antonopoulos, Spyros
Lalis, and Nikolaos Bellas. 2017. Significance-Aware Program Execution on
Unreliable Hardware. ACM Transactions on Architecture and Code Optimization
14, 2 (April 2017), 1–25. https://doi.org/10.1145/3058980

[38] Vijay Janapa Reddi, Meeta S. Gupta, Glenn Holloway, Gu-Yeon Wei, Michael D.
Smith, and David Brooks. 2009. Voltage emergency prediction: Using signatures
to reduce operating margins. In 2009 IEEE 15th International Symposium on High
Performance Computer Architecture. IEEE. https://doi.org/10.1109/hpca.2009.
4798233

[39] Vijay Janapa Reddi, Meeta S. Gupta, Michael D. Smith, Gu yeon Wei, David
Brooks, and Simone Campanoni. 2009. Software-assisted hardware reliability. In
Proceedings of the 46th Annual Design Automation Conference on ZZZ - DAC '09.
ACM Press. https://doi.org/10.1145/1629911.1630114

https://perf.wiki.kernel.org
https://doi.org/10.1109/jetcas.2018.2881461
https://doi.org/10.1145/2485922.2485948
https://doi.org/10.1109/micro.2014.54
https://doi.org/10.1109/micro.2014.54
https://doi.org/10.1109/tvlsi.2009.2019803
https://doi.org/10.1109/tvlsi.2009.2019803
https://doi.org/10.1109/pdp.2015.18
https://doi.org/10.1109/aspdac.2013.6509584
https://doi.org/10.1109/aspdac.2013.6509584
https://doi.org/10.1109/micro.2003.1253179
https://doi.org/10.1109/micro.2003.1253179
https://doi.org/10.1109/dac.2018.8465782
https://doi.org/10.1109/dac.2018.8465782
https://doi.org/10.1109/tcad.2012.2223467
https://doi.org/10.1109/ccgrid.2019.00044
https://doi.org/10.23919/date.2018.8342175
https://doi.org/10.1109/TSUSC.2020.3045195
https://doi.org/10.1109/date.2011.5763153
https://doi.org/10.1109/date.2011.5763153
https://doi.org/10.1145/2885500
https://arxiv.org/abs/2101.00969
https://doi.org/10.1145/2155620.2155622
https://doi.org/10.1145/2830772.2830811
https://doi.org/10.1016/j.future.2015.06.003
https://doi.org/10.1145/3149412.3149421
https://github.com/mihic/linux-intel-undervolt
https://github.com/mihic/linux-intel-undervolt
https://doi.org/10.1109/DSN.2009.5270290
https://doi.org/10.1109/hpca.2019.00033
https://doi.org/10.1109/hpca.2019.00033
https://doi.org/10.1145/3123939.3124537
https://doi.org/10.1109/iolts.2017.8046198
https://doi.org/10.1145/3058980
https://doi.org/10.1109/hpca.2009.4798233
https://doi.org/10.1109/hpca.2009.4798233
https://doi.org/10.1145/1629911.1630114

CF ’21, May 11–13, 2021, Virtual Conference, Italy Emmanouil Maroudas, Spyros Lalis, Nikolaos Bellas, and Christos D. Antonopoulos

[40] Roberto Giorgio Rizzo and Andrea Calimera. 2017. Tunable Error Detection-
Correction for Efficient Adaptive Voltage Over-Scaling. In 2017 New Generation
of CAS (NGCAS). IEEE. https://doi.org/10.1109/ngcas.2017.75

[41] Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman. 2018. Compre-
hensive Evaluation of Supply Voltage Underscaling in FPGA on-Chip Memories.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE. https://doi.org/10.1109/micro.2018.00064

[42] John Sartori and Rakesh Kumar. 2014. Software canaries. In Proceedings of the
2014 international symposium on Low power electronics and design - ISLPED '14.
ACM Press. https://doi.org/10.1145/2627369.2627646

[43] Karthik Swaminathan, Nandhini Chandramoorthy, Chen-Yong Cher, Ramon
Bertran, Alper Buyuktosunoglu, and Pradip Bose. 2017. BRAVO: Balanced
Reliability-Aware Voltage Optimization. In 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE. https://doi.org/10.1109/
hpca.2017.56

[44] Jingweijia Tan, Shuaiwen Leon Song, Kaige Yan, Xin Fu, Andres Marquez, and
Darren Kerbyson. 2016. Combating the Reliability Challenge of GPU Register
File at Low Supply Voltage. In Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation - PACT '16. ACM Press. https://doi.org/10.
1145/2967938.2967951

[45] Li Tan, Shuaiwen Leon Song, Panruo Wu, Zizhong Chen, Rong Ge, and Darren J.
Kerbyson. 2015. Investigating the Interplay between Energy Efficiency and
Resilience inHigh Performance Computing. In 2015 IEEE International Parallel and
Distributed Processing Symposium. IEEE. https://doi.org/10.1109/ipdps.2015.108

[46] Renji Thomas, Kristin Barber, Naser Sedaghati, Li Zhou, and Radu Teodorescu.
2016. Core tunneling: Variation-aware voltage noise mitigation in GPUs. In

2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE. https://doi.org/10.1109/hpca.2016.7446061

[47] Konstantinos Tovletoglou, Lev Mukhanov, Georgios Karakonstantis, Athanasios
Chatzidimitriou, George Papadimitriou, Manolis Kaliorakis, Dimitris Gizopoulos,
Zacharias Hadjilambrou, Yiannakis Sazeides, Alejandro Lampropulos, Shidhartha
Das, and Phong Vo. 2018. Measuring and Exploiting Guardbands of Server-Grade
ARMv8 CPU Cores and DRAMs. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE. https:
//doi.org/10.1109/dsn-w.2018.00013

[48] LucasWanner, Liangzhen Lai, Abbas Rahimi, Mark Gottscho, Pietro Mercati, Chu-
Hsiang Huang, Frederic Sala, Yuvraj Agarwal, Lara Dolecek, Nikil Dutt, Puneet
Gupta, Rajesh Gupta, Ranjit Jhala, Rakesh Kumar, Sorin Lerner, Subhasish Mitra,
Alexandru Nicolau, Tajana Simunic Rosing, Mani B. Srivastava, Steve Swanson,
Dennis Sylvester, and Yuanyuan Zhou. 2015. NSF expedition on variability-aware
software: Recent results and contributions. it - Information Technology 57, 3 (Jan.
2015). https://doi.org/10.1515/itit-2014-1085

[49] Hadi Zamani, Yuanlai Liu, Devashree Tripathy, Laxmi Bhuyan, and Zizhong
Chen. 2019. GreenMM: Energy Efficient GPU Matrix Multiplication through
Undervolting. In Proceedings of the ACM International Conference on Supercom-
puting (Phoenix, Arizona) (ICS ’19). ACM Press, New York, NY, USA, 308–318.
https://doi.org/10.1145/3330345.3330373

[50] Yazhou Zu, Charles R. Lefurgy, Jingwen Leng, Matthew Halpern, Michael S.
Floyd, and Vijay Janapa Reddi. 2015. Adaptive guardband scheduling to improve
system-level efficiency of the POWER7+. In Proceedings of the 48th International
Symposium on Microarchitecture - MICRO-48. ACM Press. https://doi.org/10.
1145/2830772.2830824

https://doi.org/10.1109/ngcas.2017.75
https://doi.org/10.1109/micro.2018.00064
https://doi.org/10.1145/2627369.2627646
https://doi.org/10.1109/hpca.2017.56
https://doi.org/10.1109/hpca.2017.56
https://doi.org/10.1145/2967938.2967951
https://doi.org/10.1145/2967938.2967951
https://doi.org/10.1109/ipdps.2015.108
https://doi.org/10.1109/hpca.2016.7446061
https://doi.org/10.1109/dsn-w.2018.00013
https://doi.org/10.1109/dsn-w.2018.00013
https://doi.org/10.1515/itit-2014-1085
https://doi.org/10.1145/3330345.3330373
https://doi.org/10.1145/2830772.2830824
https://doi.org/10.1145/2830772.2830824

	Abstract
	1 Introduction
	2 Motivation
	3 Methodology
	4 Mechanism design & implementation
	5 Experimental evaluation
	5.1 Characterization of undervolting tolerance
	5.2 Effect of dynamic undervolting on power efficiency
	5.3 Overhead of dynamic voltage management by CADU++

	6 Towards MVD architectures
	7 Related work
	8 Conclusions
	Acknowledgments
	References

